Probability Distribution of the Difference in Intensities of Two Unrelated Structures

By W.THÖNI*
Institut für Kristallographie und Petrographie, ETH Zürich, Switzerland

(Received 22 May 1975; accepted 20 August 1975)

Abstract

This note deals with the probability distribution of the difference in intensities of two unrelated structures, having the same symmetry and containing p and q atoms respectively ($p>q$). Both centrosymmetric and non-centrosymmetric cases are discussed. The corresponding residual $R_{I}=\sum\left|I_{1}-I_{2}\right| / \sum I_{1}$, where I_{1} and I_{2} are the intensities for two unrelated structures having the same symmetry and the same atoms, has the value $4 / \pi \simeq 1.273$ for centrosymmetric structures and 1 for non-centrosymmetric structures.

1. Introduction

Wilson (1950) has considered the probable values of the residual

$$
\begin{equation*}
R=\sum\left|F_{1}-F_{2}\right| / \sum F_{1} \tag{1}
\end{equation*}
$$

where F_{1} represents the magnitude of the structure amplitudes from a correct structure and F_{2} represents the corresponding values for an unrelated structure with the same symmetry and the same atoms. The largest likely values of R have been used thereafter in discussing the correctness of a structure proposal in case of single-crystal data.

An analogous residual

$$
\begin{equation*}
R_{I}=\sum\left|I_{1}-I_{2}\right| / \sum I_{1} \tag{2}
\end{equation*}
$$

with intensities I instead of structure amplitudes proved to be more convenient for structure analyses based on powder data both for X-rays (Thöni, 1973) and neutrons (Rietveld, 1968). This residual has briefly been mentioned by Wilson (1969) when discussing the effect of a badly misplaced atom on different types of residuals. It was therefore thought worthwhile to work out more generally the corresponding probability distribution of the intensity difference $\left|I_{1}-I_{2}\right|$, both in the centrosymmetric and non-centrosymmetric case. The largest likely values of R_{I} can easily be deduced therefrom.

2. The probability distribution $\boldsymbol{P}(\boldsymbol{w})$

Consider a first structure containing p atoms and a second unrelated structure with the same symmetry, containing q atoms, where $p>q$. We assume that the group q contains a sufficiently large number of atoms so that the intensities I_{q} (and therefore I_{p} also) will follow the ideal centric or acentric probability distribution $P(I)$ given by (Howells, Phillips \& Rogers, 1950)

$$
\begin{gather*}
{ }_{\mathrm{i}} P(I)=\left(2 \pi \sigma^{2}\right)^{-1 / 2} I^{-1 / 2} \exp \left(-I / 2 \sigma^{2}\right) \tag{3}\\
{ }_{1} P(I)=\left(\sigma^{2}\right)^{-1} \exp \left(-I / \sigma^{2}\right), \tag{4}
\end{gather*}
$$

[^0]where σ^{2} is the mean-square value of the distribution which equals the sum of the square of the atomic scattering factors. Alternatively one can take I_{p} to represent the observed intensities and I_{q} the calculated intensities for one and the same structure, in the case of a completely wrong structure proposal.

Denoting for convenience $I_{p}-I_{q}$ by D, the distribution for D can be worked out using a general theorem in probability theory,

$$
\begin{equation*}
P(D)=\int_{0 \text { or }|D|}^{\infty} P\left(I_{q}\right) P\left(D+I_{q}\right) \mathrm{d} I_{q} \tag{5}
\end{equation*}
$$

where I_{q} and $I_{p}=D+I_{q}$ are assumed to be completely independent of each other. While D can have any value between $-\infty$ and $+\infty$, the distributions $P\left(I_{q}\right)$ and $P\left(I_{p}\right)$ exist only in the range 0 to ∞. The lower limit of integration in (5) therefore becomes 0 for $D>0$ and $|D|$ for $D<0$.

It is convenient to work out the results in terms of the following normalized variables

$$
\begin{equation*}
w=D / \sigma_{p}^{2} ; \quad s=\sigma_{q}^{2} / \sigma_{p}^{2} ; \quad M=I_{q} / \sigma_{p}^{2}, \tag{6}
\end{equation*}
$$

since the final expressions take simple forms in terms of these quantities.

(a) Centrosymmetric case

If (3) and (6) are substituted into (5), the distribution for w takes the form

$$
\begin{array}{r}
P(w)=(2 \pi)^{-1} s^{-1 / 2} \exp (-w / 2) \int_{0 \text { or }|w|}^{\infty}[M(M+w)]^{-1 / 2} \\
\times \exp [-M(1+s) / 2 s] \mathrm{d} M \tag{7}
\end{array}
$$

or

$$
\begin{gather*}
P(w)=(2 \pi)^{-1} s^{-1 / 2} \exp (-w / 2) \\
\times \exp (-|w|(1+s) / 2 s) \cdot L(w) \tag{8a}\\
w<0 \\
P(w)=(2 \pi)^{-1} s^{-1 / 2} \exp (-w / 2) . L(w) \tag{8b}\\
w>0
\end{gather*}
$$

where
$L(w)=\int_{0}^{\infty}[M(M+|w|)]^{-1 / 2} \exp [-M(1+s) / 2 s] \mathrm{d} M$.

Fig. 1. Probability distribution $P(w)$ for the centrosymmetric case corresponding to $s=0 \cdot 0,0 \cdot 2,0 \cdot 6,1 \cdot 0$.

Fig. 2. Probability distribution $P(w)$ for the non-centrosymmetric case corresponding to $s=0 \cdot 0,0 \cdot 2,0 \cdot 6,1 \cdot 0$.

With the result (Erdelyi, 1954, p. 138)

$$
\begin{aligned}
& \int_{0}^{\infty}\left(t^{2}+2 a t\right)^{\gamma-1 / 2} \exp (-p t) \mathrm{d} t \\
& \quad=\pi^{-1 / 2} \Gamma\left(\gamma+\frac{1}{2}\right) \cdot(2 a \mid p)^{\gamma} \exp (a p) \cdot K_{\gamma}(a p) \\
& \quad|\operatorname{Arg} a|<\pi ; \quad \operatorname{Re} \gamma>-\frac{1}{2} ; \quad \operatorname{Re} p>0,
\end{aligned}
$$

where $\Gamma(x)$ is the gamma function, and $K_{\nu}(x)$ the Bessel function of order $\gamma,(9)$ reduces to

$$
L(w)=\exp [|w|(1+s) / 4 s] . K_{0}[|w|(1+s) / 4 s] .
$$

The distribution for w then takes the form:

$$
\begin{gather*}
P(w)=(2 \pi)^{-1} s^{-1 / 2} \exp (-w / 2) \exp [-|w|(1+s) / 4 s] \\
\quad \times K_{0}[|w|(1+s) / 4 s] \quad(10 a) \tag{10a}\\
w<0 \\
P(w)=(2 \pi)^{-1} s^{-1 / 2} \exp (-w / 2) \exp [+|w|(1+s) / 4 s] \\
\quad \times K_{0}[|w|(1+s) / 4 s] \quad(10 b) \tag{10b}\\
w>0
\end{gather*}
$$

The nature of the function $P(w)$ in the centrosymmetric case is shown in Fig. 1 for different values of s.

(b) Non-centrosymmetric case

If (4) and (6) are substituted into (5), we get

$$
\begin{equation*}
P(w)=s^{-1} \exp (-w) \int_{0 \text { or }|w|}^{\infty} \exp [-M(1+s) / s] \mathrm{d} M \tag{11}
\end{equation*}
$$

Integration leads to the simple result

$$
\begin{align*}
& P(w)=(1+s)^{-1} \exp (-|w| / s) \quad w<0 \tag{12a}\\
& P(w)=(1+s)^{-1} \exp (-|w|) \quad w>0 . \tag{12b}
\end{align*}
$$

The distribution function $P(w)$ for this non-centrosymmetric case is given for different values of s in Fig. 2.
(c) Properties of $P(w)$

Figs. 1 and 2 show the probability distribution $P(w)$ for the difference in intensities of two unrelated structures for different values of s. In the limit $s \rightarrow 0$ we get as expected the original normalized intensity distributions, as shown easily by an expansion. As s increases, the function $P(w)$ develops more and more on the negative side and for $s=1$ becomes completely symmetric about $w=0$. This general behaviour is similar for both centrosymmetric and non-centrosymmetric structures. A comparison of Figs. 1 and 2 shows that, for a particular value of s, the curve is sharper for the centrosymmetric than for the non-centrosymmetric case. A comparison with the corresponding probability distributions for the difference in structure amplitudes (Ramachandran, Srinivasan \& Raghupathy Sarma, 1963) shows an increased sensitivity with respect to a centre of symmetry.

3. Largest likely values for the residual \boldsymbol{R}_{I}

The residual R_{I} defined in (2) can easily be worked out in terms of the available distribution $P(w)$. From its definition, it is readily seen that

$$
\begin{equation*}
\left.R_{I}=\langle | D| \rangle\left|\left\langle I_{p}\right\rangle=\langle | w\right|\right\rangle=\int_{-\infty}^{+\infty}|w| P(w) \mathrm{d} w \tag{13}
\end{equation*}
$$

Using (10a), (10b) and (13), we have for the centrosymmetric case

$$
\begin{align*}
R_{I}=\pi^{-1} s^{-1 / 2} \int_{0}^{\infty}|w| \cosh & {[|w|(1-s) / 4 s] } \\
& \times K_{0}[|w|(1+s) / 4 s] \mathrm{d} w \tag{14}
\end{align*}
$$

In general this integral can only be evaluated numerically. However it reduces considerably in the limit $s \rightarrow 1$ to

$$
\begin{equation*}
R_{I}=\pi^{-1} \int_{0}^{\infty}|w| K_{0}(|w| / 2) \mathrm{d} w \tag{15}
\end{equation*}
$$

With the result (Erdelyi, 1954, p. 331)

$$
\begin{gathered}
\int_{0}^{\infty} K_{\gamma}(a x) x^{s-1} \mathrm{~d} x=a^{-s 2^{s-2}} \Gamma\left(\frac{1}{2} s-\frac{1}{2} \gamma\right) \Gamma\left(\frac{1}{2} s+\frac{1}{2} \gamma\right) \\
\operatorname{Re} s>|\operatorname{Re} \gamma|, \operatorname{Re} \alpha>0
\end{gathered}
$$

the residual becomes

$$
\begin{equation*}
R_{I}=\pi^{-1}\left(\frac{1}{2}\right)^{-2} \Gamma^{2}(1)=4 / \pi \simeq 1 \cdot 273 \tag{16}
\end{equation*}
$$

Using (12a), (12b) and (13), we get for the non-centrosymmetric case the following simple result

$$
\begin{equation*}
R_{I}=\left(1+s^{2}\right) /(1+s) \tag{17}
\end{equation*}
$$

The residual R_{I} as a function of s is shown in Fig. 3 for both the centrosymmetric (C) and non-centrosymmetric (A) cases.

The values of R_{I} for the centrosymmetric and noncentrosymmetric cases for $s=1(4 / \pi \simeq 1.273$ and 1 respectively) can directly be compared with the corresponding values of the residual R for structure amplitudes defined in (1) $(0.828$ and 0.586 respectively), first deduced by Wilson (1950), for a proposed structure which is completely wrong.

Fig. 3. Residual R_{I} as a function of $s . C$ and A denote centrosymmetric and acentric (non-centrosymmetric) cases respectively.

Thus R_{I} for an entirely wrong centrosymmetric structure is $4 / \pi$ times as big as for a wrong non-centrosymmetric structure, which has to be compared with a factor of $V / 2$ in case of the residual R. The residual R_{I} for intensities is therefore less sensitive with respect to a centre of symmetry than the residual R in the case of the structure amplitudes.

References

Erdelyi, A. L. (1954). Tables of Integral Transforms. Vol. I. New York: McGraw Hill.

Howells, E. R., Phillips, D. C. \& Rogers, D. (1950). Acta Cryst. 3, 210-214.
Ramachandran, G. N., Srinivasan, R. \& Raghupathy Sarma, V. (1963). Acta Cryst. 16, 662-666.
Rietveld, H. M. (1968). J. Appl. Cryst. 2, 65-71.
Thöni, W. (1973). Doctoral Thesis, ETH Zürich, Switzerland.
Wilson, A. J. C. (1950). Acta Cryst. 3, 397-398.
Wilson, A. J. C. (1969). Acta Cryst. B25, 1288-1293.

[^0]: * Present address: University of Oxford, Department of Metallurgy and Science of Materials, Parks Road, Oxford, OX1 3PH, England.

