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Probability Distribution of the Difference in Intensities of Two Unrelated Structures
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This note deals with the probability distribution of the difference in intensities of two unrelated struc-
tures, having the same symmetry and containing p and ¢ atoms respectively (p>g). Both centrosym-
metric and non-centrosymmetric cases are discussed. The corresponding residual R,=>|I,—Ll/>1,
where I, and I, are the intensities for two unrelated structures having the same symmetry and the same
atoms, has the value 4/r~1-273 for centrosymmetric structures and 1 for non-centrosymmetric struc-

tures.

1. Introduction

Wilson (1950) has considered the probable values of
the residual

R=Z|F1*F2|/ZF1 ¢))

where F, represents the magnitude of the structure
amplitudes from a correct structure and F, represents
the corresponding values for an unrelated structure
with the same symmetry and the same atoms. The
largest likely values of R have been used thereafter in
discussing the correctness of a structure proposal in
case of single-crystal data.
An analogous residual

R1=z |11‘”12|/Z 1, (2)

with intensities /instead of structure amplitudes proved
to be more convenient for structure analyses based on
powder data both for X-rays (Thoni, 1973) and neu-
trons (Rietveld, 1968). This residual has briefly been
mentioned by Wilson (1969) when discussing the effect
of a badly misplaced atom on different types of resid-
uals. It was therefore thought worthwhile to work out
more generally the corresponding probability distribu-
tion of the intensity difference |/; — L], both in the cen-
trosymmetric and non-centrosymmetric case. The lar-
gest likely values of R, can easily be deduced therefrom.

2. The probability distribution P (w)

Consider a first structure containing p atoms and a
second unrelated structure with the same symmetry,
containing ¢ atoms, where p>g. We assume that the
group ¢ contains a sufficiently large number of atoms
so that the intensities J, (and therefore I, also) will fol-
low the ideal centric or acentric probability distribu-
tion P(I) given by (Howells, Phillips & Rogers, 1950)

1P(I)=(2rcg?)~2I~1% exp (— I[26%) 3
PDy=(@»)texp (-1, 4)
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where ¢? is the mean-square value of the distribution
which equals the sum of the square of the atomic scat-
tering factors. Alternatively one can take I, to represent
the observed intensities and I, the calculated inten-
sities for one and the same structure, in the case of a
completely wrong structure proposal.

Denoting for convenience I, — I, by D, the distribu-
tion for D can be worked out using a general theorem
in probability theory,

P(D)=S

where I, and I,=D+1, are assumed to be completely
independent of each other. While D can have any
value between —oo and +co, the distributions P(7)
and P(l,) exist only in the range 0 to co. The lower
limit of integration in (5) therefore becomes 0 for D>0
and |D| for D <O.

It is convenient to work out the results in terms of
the following normalized variables

w=D[c}; s=0lc}; M=I/c}, (6)

since the final expressions take simple forms in terms
of these quantities.

oo

P(L)P(D+1)d], , ©)

Oor |D]

(a) Centrosymmetric case

If (3) and (6) are substituted into (5), the distribution
for w takes the form

T MMty

0 or |w|

P(w)=(2)~'s~V2 exp (—w[2) S
x exp [—M(1+s)/2s]dM (7)
or
P(w)y=Q2n)~ts~ 12 exp (—w/2)

x exp (—|wl(1+5)/2s) . Lw) (8a)

w<0
Pw)=Q2n)~1s 2 exp (—w/2) . L(w)

w>0,

(85)

where

L(w)=S:°[M(M+ W]~V exp [— M(1 +5)/2s]dM . (9)
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Fig. 1. Probability distribution P(w) for the centrosymmetric
case corresponding to s=0-0, 0-2, 0-6, 1-0.
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Fig. 2. Probability distribution P(w) for the non-centrosym-
metric case corresponding to s=0-0, 0-2, 0-6, 1-0.
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With the result (Erdelyi, 1954, p. 138)

S (t2+2at)"_1/2 exp (—pt)dt
(1}
=n~2[(y+%) . (2a/p)’ exp (ap) . K,(ap)
|Argal<m; Rey>-—3%; Rep>0,

where I'(x) is the gamma function, and X,(x) the Bessel
function of order v, (9) reduces to

L(w)=exp [|w](1+5)/4s] . K[|w|(1+5)/4s].

The distribution for w then takes the form:

P(w)=(2n)"1s~V2 exp (—w/2) exp [— [w|(1 +5)/4s]
X Ko[|w|(1+5)/4s] (10a)
w<0

P(w)=(2m)"1s~12 exp (—w/2) exp [+|w|(1+5)/4s]
x Ko[lwl(1+5)/4s] (10b)
w>0.

The nature of the function P(w) in the centrosymmetric
case is shown in Fig. 1 for different values of s.

(b) Non-centrosymmetric case
If (4) and (6) are substituted into (5), we get

oo

Pw)y=s"texp (—W)S exp[—M(1+s)/sldM .

0 or |w]
(11)
Integration leads to the simple result
Pw)y=(1+s)"texp(—|wl/s) w<0 (12a)
Pw)y=(1+s)"texp(—Iw]) w>0. (12b)

The distribution function P(w) for this non-centro-
symmetric case is given for different values of s in
Fig. 2.

(¢) Properties of P(w)

Figs. 1 and 2 show the probability distribution P(w)
for the difference in intensities of two unrelated struc-
tures for different values of s. In the limit s — 0 we get
as expected the original normalized intensity distribu-
tions, as shown easily by an expansion. As s increases,
the function P(w) develops more and more on the
negative side and for s=1 becomes completely sym-
metric about w=0. This general behaviour is similar
for both centrosymmetric and non-centrosymmetric
structures. A comparison of Figs. 1 and 2 shows that,
for a particular value of s, the curve is sharper for the
centrosymmetric than for the non-centrosymmetric
case. A comparison with the corresponding probability
distributions for the difference in structure amplitudes
(Ramachandran, Srinivasan & Raghupathy Sarma,
1963) shows an increased sensitivity with respect to a
centre of symmetry.
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3. Largest likely values for the residual R;

The residual R; defined in (2) can easily be worked
out in terms of the available distribution P(w). From
its definition, it is readily seen that

R=(DDKay ==\ wpodw . 13

Using (10a), (106) and (13), we have for the centro-
symmetric case

Ry=n—ls—12 S°°|w| cosh [|w](1 —s)/4s]
[+

x K[Iwl(1 +5)/4s]dw . (14)

In general this integral can only be evaluated numeri-
cally. However it reduces considerably in the limit
s—1to

Ry=n~1 SjIWIKo(IWI/Z)dw . (19)

With the result (Erdelyi, 1954, p. 331)

S K (ax)x*~dx=a-*25"T (35— 1) (s +17)
(]
Re s>|Rey|, Rea>0,

thg residual becomes
Ry=n"Y)"ry(1)=4/n~1-273 . (16)

Using (12a), (12b) and (13), we get for the non-centro-
symmetric case the following simple result

Ry=(1+5)/(1+5) . (7

The residual R; as a function of s is shown in Fig. 3
for both the centrosymmetric (C) and non-centrosym-
metric (A4) cases.

The values of R; for the centrosymmetric and non-
centrosymmetric cases for s=1 (4/r~1-273 and 1 re-
spectively) can directly be compared with the cor-
responding values of the residual R for structure am-
plitudes defined in (1) (0-828 and 0-586 respectively),
first deduced by Wilson (1950), for a proposed struc-
ture which is completely wrong.

OF TWO UNRELATED STRUCTURES

123
Rl
/
100 .
_%
\_“
ors
030
623
000
000 azs 030 ars 100

S
Fig. 3. Residual Ry as a function of s. C and A4 denote centro-
symmetric and acentric (non-centrosymmetric) cases res-
pectively.

Thus R, for an entirely wrong centrosymmetric struc-
ture is 4/m times as big as for a wrong non-centrosym-
metric structure, which has to be compared with a fac-
tor of J2 in case of the residual R. The residual R, for
intensities is therefore less sensitive with respect to a
centre of symmetry than the residual R in the case of
the structure amplitudes.

References

ERDELYI, A. L. (1954). Tables of Integral Transforms. Vol.
I. New York: McGraw Hill.

HoweLLrs, E. R., PaiLLps, D. C. & RoOGERs, D. (1950).
Acta Cryst. 3, 210-214.

RAMACHANDRAN, G. N., SRINIVASAN, R. & RAGHUPATHY
SARMA, V. (1963). Acta Cryst. 16, 662-666.

RieTveLp, H. M. (1968). J. Appl. Cryst. 2, 65-71.

TaonNi, W. (1973). Doctoral Thesis, ETH Ziirich, Switzer-
land.

WILsON, A. J. C. (1950). Acta Cryst. 3, 397-398.

WILsON, A. J. C. (1969). Acta Cryst. B25, 1288-1293.



